Отношение тангенциального ускорения к нормальному. Кинематика материальной точки


Касательное ускорение точки равно первой производной от модуля скорости или второй производной от расстояния по времени. Касательное ускорение обозначается – .

.

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости. (рис. 8.5.)

Нормальным ускорением точки называется величина, равная квадрату скорости, деленному на радиус кривизны.

Вектор нормального ускорения направлен от данной точки к центру кривизны, (рис.8.6.). Нормальное ускорение обозначается .

– нормаль к данной точке на траектории движения.

Полное ускорение точки определяется из векторного уравнения:

Зная направление и модули и , по правилу параллелограмма определим ускорение, соответствующее данной точке траектории движения. Тогда модуль ускорения определим:

.

Характер - это такое исполнение движений, при котором у наблюдающих остается впечатление о легкости или грузности, округлости или угловатости, силе или расслабленности, свободе или скованности движений и т. п. Все эти оттенки создаются благодаря своеобразному подбору движений, осуществляющих действие

8.поступательное движения твердого тела. траектория, скорости и ускорения точек твердого тела при поступательном движении .

Поступательным движением твердого тела называется такое движение, при котором отрезок прямой, соединяющий две любые точки тела, во все время движения остается себе параллельным (например, АВ ).

Теорема. При поступательном движении твердого тела траектории, скорости и ускорения всех его точек одинаковы .

Доказательство . Пусть отрезок АВ тела за время перемещается поступательно. Возьмем произвольную точку O и определим в пространстве положение отрезка АВ радиусами-векторами и. Обозначим: – радиус-вектор, определяющий положение точки В относительно точки А :

Вектор не изменяется ни по величине, ни по направлению, так как (по определению поступательного движения). Из соотношения (1) видно, что траектория точки В получается из траектории точки А параллельным смещением точек этой траектории на постоянный вектор. Таким образом, траектории точек А и В будут одинаковыми.

Возьмем производную по времени от равенства (1). Тогда

Следовательно, при поступательном движении твердого тела скорости и ускорения всех его точек в данный момент времени одинаковы.

Отметим, что сам факт поступательного движения не определяет ни закона движения, ни вида траектории. При поступательном движении точки тела могут описывать любые траектории (например, окружности ). Но все они будут одинаковы .

Дифференцируя левую и правую части приведенного выше векторного соотношения и учитывая, что dAB/dt=0, получаем drB/dt =drA/dt, или VB = VA. Дифференцируя по времени левую и правую части полученного соотношения для скоростей, находим dVB/dt=dVA/dt, или аB = аА. На основании вышеизложенного можно сделать следующий вывод: чтобы задать движение и определить кинематические характеристики тела, совершающего поступательное движение, достаточно задать движение одной его любой точки (по-
люса) и найти ее кинематические характеристики.

Как и материальная точка, тело при его поступательном движении будет иметь одну степень свободы при движении по направляющей, задающей траекторию его точкам; две степени свободы в случае движения на плоскости (при постоянном контакте с ней хотя бы одной точкой) и три степени свободы в общем случае движения в пространстве.

9. вращения твердого тела вокруг неподвижной оси. Задания движения, угловая скорость и угловая ускорение, скорость и ускорения точек тела .

И зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Разложение ускорения a (t) {\displaystyle \mathbf {a} (t)\ \ } на тангенциальное и нормальное a n {\displaystyle \mathbf {a} _{n}} ; ( τ {\displaystyle \mathbf {\tau } } - единичный касательный вектор).

Тангенциа́льное ускоре́ние - компонента ускорения , направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты , характеризующей изменение направления скорости. Тангенциальное ускорение равно произведению единичного вектора, направленного по скорости движения, на производную модуля скорости по времени. Таким образом, направлено в ту же сторону, что и вектор скорости при ускоренном движении (положительная производная) и в противоположную при замедленном (отрицательная производная).

Обозначается обычно символом, выбранным для ускорения, с добавлением индекса, обозначающего тангенциальную компоненту: a τ {\displaystyle \mathbf {a} _{\tau }\ \ } или a t {\displaystyle \mathbf {a} _{t}\ \ } , w τ {\displaystyle \mathbf {w} _{\tau }\ \ } , u τ {\displaystyle \mathbf {u} _{\tau }\ \ } и т. д.

Иногда используется не векторная форма, а скалярная - a τ {\displaystyle a_{\tau }\ \ } , обозначающая проекцию полного вектора ускорения на единичный вектор касательной к траектории, что соответствует коэффициенту разложения по сопутствующему базису .

Энциклопедичный YouTube

  • 1 / 5

    Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

    a τ = d v d t , {\displaystyle a_{\tau }={\frac {dv}{dt}},}

    где v = d l / d t {\displaystyle v\ =dl/dt} - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

    Если использовать для единичного касательного вектора обозначение e τ {\displaystyle \mathbf {e} _{\tau }\ } , то можно записать тангенциальное ускорение в векторном виде:

    a τ = d v d t e τ . {\displaystyle \mathbf {a} _{\tau }={\frac {dv}{dt}}\mathbf {e} _{\tau }.}

    Вывод

    Вывод 1

    Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\,\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение .

    Здесь использовано обозначение e n {\displaystyle e_{n}\ } для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

    d l / d t = v {\displaystyle dl/dt=v\ }

    и, из геометрических соображений,

    d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.}

    Вывод 2

    Если траектория гладкая (что предполагается), то:

    То и другое следует из того, что угол вектора к касательной будет не ниже первого порядка по . Отсюда сразу же следует искомая формула.

    Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых d t {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ } , поскольку угол отклонения этого вектора от касательной при малых d t {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .

    Замечания

    Абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

    Скорость. Путь.

    Пусть материальная точка совершает движение в выбранной СО. Вектор, проведённый из начального положения точки в конечное называется перемещением (). Тогда векторная величина называется средней скоростью перемещения . Длина участка траектории, пройденного точкой за промежуток , называется путём S (). Средняя скорость характеризует быстроту и направление движения частиц. Среднюю быстроту движения тела по траектории характеризует средняя путевая скорость . Как быстро и в каком направлении движется тело в данный момент t характеризует мгновенная скорость . Мгновенная путевая скорость . При Модуль мгновенной скорости равен мгновенной путевой скорости Мгновенная скорость всегда направленна по касательной к траектории. Для бесконечно малого перемещения . Для небольших промежутков выполняется приближённо.

    Скорость – векторная величина, значит, её можно записать в виде . С другой стороны . Следовательно, проекция скорости … Величина (модуль) скорости .

    Выражение для скорости в полярных координатах (): , . Направление задаётся углом или единичным вектором . Радиус-вектор точки , , – единичный вектор, перпендикулярный . .

    Пройденный путь частицы от до .

    Ускорение. Нормальное и тангенциальное ускорения.

    При движении материальной точки её скорость меняется как по величине, так и по направлению. Как быстро это происходит в произвольный момент времени, характеризует векторная величина ускорение . . Проекция вектора ускорения

    Рассмотрим движение частицы, совершаемое в плоскости. Скорость направлена по касательной траектории, поэтому можно записать . Здесь единичный вектор задаёт направление касательной, .

    Ускорение , направленное по касательной к траектории, определяемое скоростью изменение величины скорости, или модуля, называется тангенциальным ускорением .

    нормальное ускорение (характеризует быстроту изменения направления скорости), - единичный вектор, перпендикулярный и направленный внутрь кривой, R – радиус кривизны линии.

    Третий закон Ньютона. Принцип относительности Галилея.

    3-ий закон Ньютона: силы, с которыми 2 тела действуют друг на друга, равны по величине, противоположны по направлению, лежат на одной прямой, проходящей через тела и имеют одинаковую физическую природу.

    Три закона Ньютона позволяют решить основную задачу динамики: по заданным силам, начальному положению и начальным скоростям тел можно определить дальнейшее движение механической системы. 1-ый закон даёт критерий отыскания ИСО; 2-ой закон даёт динамическое уравнение движения; 3-ий закон позволяет ввести в рассмотрение все силы, действующие в системе. При переходе одной ИСО в другую ИСО скорости преобразовываются по закону , а ускорение - , т.е. ускорение тел не меняется, также как и силы, следовательно, остаётся неизменным уравнение 2-ого закона. Следовательно, при одинаковых начальных условиях (координаты и скорости) мы получим в обоих случаях одинаковое решение. Значит, ИСО – эквивалентны.

    Принцип относительности Галилея: все механические явления в различных ИСО протекают одинаковым образом при одинаковых начальных условиях, вследствие чего нельзя выделить какую-либо ИСО как абсолютно покоящуюся.

    Закон сохранения импульса.

    В механике существуют 3 фундаментальные закона сохранения (-это некоторая функция координат скоростей частиц и времени, которая остаётся постоянной при движении). Законы сохранения позволяют решать задачи, используя уравнения дифференциалов 1-ого порядка. Векторная величина называется импульсом материальной точки (импульс – количество движения). Из 2-ого закона Ньютона следует, что скорость изменения импульса механической системы равна сумме внешних сил, действующих на систему . N – количество материальных точек. Система, на которую не действуют внешние силы, называется замкнутой , или изолированной. Для замкнутой системы правая часть уравнения равна 0. Значит, . Получаем закон сохранения импульса: импульс замкнутой системы сохраняется (не меняется) со временем .

    Закон сохранения импульса является следствием однородности пространства. Замечания: 1) Импульс незамкнутой системы будет сохранятся, если внешние силы компенсируют друг друга, и их результирующая = 0; 2) если результирующая внешних сил , но = 0 её проекция на некоторое направление (пр. ОХ), то проекция импульса на это направление будет сохранятся ; 3)если внешние силы присутствуют, но рассматривается кратковременных процесс (удар, взрыв), то действующими внешними силами можно пренебречь и использовать закон сохранения импульса , , т.к. dt мало, то импульс внешних сил мал, и им можно пренебречь .

    Пусть задана система материальных точек, массами , радиус-векторы которых относительно некоторого начала О . Точка С, радиус-вектор которой определяется выражением , называется центром масс , или центром инерции системы. Её положение относительно тел, не зависит от выбора О. Скорость центра масс . ИСО, связанную с центром масс, называют системой центра масс .

    Консервативные силы.

    Взаимодействие между телами, находящимися на некотором расстоянии друг от друга, осуществляется посредством силовых полей, создаваемых во всём окружающем пространстве. Если поле не меняется, то такое поле называется стационарным . Пусть существует точка О (центр силового поля), такая что в любой точке пространства сила, действующая на частицу, лежит на прямой, проходящей через данную точку пространства и силовой центр. Если модуль сил зависит только от расстояния между этими точками, то мы имеем центральное силовое поле (пр. кулоновское поле). Если во всех точках пространства сила одинакова по величине и направлению, то говорят об однородном силовом поле . Если работа, совершаемая над частицей силами стационарного поля, не зависит от выбора траектории движения, определяется только начальным и конечным положениями тел, то такое поле называют консервативным .

    1) поле силы тяжести называют стационарным однородным. . Значит, поле силы тяжести – консервативное.

    2) поле силы упругости. . Значит, поле силы упругости – консервативное.

    3) Покажем, что любое центральное силовое поле является консервативным. , . . Здесь работа определяется начальным и конечным положением точек, а не видом траектории. Следовательно, центральное силовое поле является консервативным. Центральными силами являются:

    1) кулоновская сила взаимодействия , .

    2) гравитационная сила взаимодействия , .

    Эквивалентным определением консервативных сил является: сила называется консервативной , если её работа на произвольной замкнутой траектории = 0.

    Задача 2-ух тел.

    Задача 2-ух тел по движению изолированной системы 2-ух материальных точек, взаимодействующих друг с другом. В силу изолированности системы её импульс сохраняется, а центр масс движется с постоянной скорость, относительно системы отсчёта К’. Это позволяет перейти в систему центра масс (она будет инерциальная, как и К’). – радиус-вектор относительно . - радиус-векторы и относительно С. Составляем систему: . Решая систему, получаем: , . Движение тел определяется силами , . Учли 3-ий закон Ньютона и изотропность пространства (если поворот СО на произвольный угол не приведёт к изменению результатов измерений). Получаем уравнения: , . Решаем, в результате получаем: .

    Центр масс твёрдого тела движется таким же образом, как двигалась бы материальная точка массы m под действием всех внешних сил, действующих на твёрдое тело.

    Гироскопы.

    Гироскоп (или волчок) – массивное твёрдое тело, симметричное некоторой оси, совершающее вращения вокруг неё с большой угловой скоростью. В силу симметрии гироскопа выполняется . При попытке повернуть вращающийся гироскоп вокруг некоторой оси наблюдается гироскопический эффект – под действием сил, которые, казалось бы, должны были вызвать поворот оси гироскопа ОО вокруг прямой О’O’, ось гироскопа поворачивается вокруг прямой О’’О’’ (ось ОО и прямая О’O’ предполагаются лежащими в плоскости чертежа, а прямая О’’О’’ и силы f1 и f2 – перпендикулярными к этой плоскости). Объяснение эффекта основано на использование уравнения момента . Момент импульса поворачивается вокруг оси ОХ в силу соотношения . Вместе с вокруг ОХ поворачивается и гироскоп. Вследствие гироскопического эффекта на подшипнике, на котором вращается гироскоп, начинают действовать гироскопические силы . Под действием гироскопических сил ось гироскопа стремиться занять положение, параллельное угловой скорости вращения Земли.

    Описанное поведение гироскопа положено в основу гироскопического компаса . Преимущества гироскопа: указывает точное направление на географический северный полюс, его работа не подвержена воздействию металлических предметов.

    Прецессия гироскопа – особый вид движения гироскопа имеет место в том случае, если момент действующих на гироскоп внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Рассмотрим движение гироскопа с одной закреплённой точкой на оси под действием силы тяжести , – расстояние от закреплённой точки до центра инерции гироскопа, – угол между гироскопом и вертикалью. направлен момент перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа. Уравнение движения: приращение импульса = Следовательно, изменяет своё положение в пространстве таким образом, что его конец описывает окружность в горизонтальной плоскости. За промежуток времени гироскоп повернулся на угол ось гироскопа описывает конус вокруг вертикальной оси с угловой скоростью – угловая скорость прецессии.

    Гармонические колебания.

    Колебания – процессы, характеризующиеся той или иной степенью повторяемости по времени. В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеханические и другие. Все эти процессы, несмотря на различную физическую природу, описываются одинаковыми математическими уравнениями и имеют ряд общих свойств. Рассмотрим небольшой шарик массы m, подвешенный на лёгкой упругой пружине жёсткости k. В положении равновесия (х=0) сумма сил, действующих на шар, равна 0, т.е. . При отклонении шарика от положения равновесия его движение будет описываться уравнением: . Уравнение запишем в следующем виде: . Положение тела описывается через функцию косинуса (или синуса), которая называется гармонической, поэтому такие колебания называются гармоническими. амплитуда колебаний – даёт максимальное отклонение от положения равновесия. – фаза колебания – определяется смещением тела в данный момент времени. – начальная фаза . Функция косинуса имеет период . Значит, состояние колеблющегося тела повторяется при изменении фазы на . Промежуток времени, в течение которого фаза изменяется на , называется периодом колебаний . Период – время, за которое совершается одно полное колебание . Частота колебаний – количество колебаний за единицу времени , . круговая (циклическая) частота , т.е. количество колебаний за секунд. Зная начальное положение и скорость тела, можно определить амплитуду и начальную фазу: .Движение тела при гармоническом колебании происходит под действием квазиупругой силы : , которая является консервативной, а, значит, выполняется закон сохранения энергии , . Среднее значение кинетической и потенциальной энергий по времени: .

    Затухающие колебания.

    В реальных физических системах всегда действуют силы сопротивления, в результате действия которых амплитуда колебаний с течением времени убывает. рассмотрим движение тела в вязкой среде, когда силы сопротивления противоположны скорости движения тела: , – коэффициент сопротивления. . Подставим вместо – дифференциальное уравнение 2-ого порядка сводится к квадратному алгебраическому уравнению . Колебательный процесс возможен, если силы сопротивления достаточно малы. Это означает, что должно выполняться условие . В этом случае . Следовательно, общим решением нашего уравнения будет функция – кинематический закон затухающих колебаний. Можно сказать, что наблюдаются гармонические колебания с частотой , амплитуда же колебаний убывает по экспоненциальному закону . Скорость затухания определяется величиной коэффициента затухания . Затухание характеризуется также декрементом затухания , который показывает во сколько раз уменьшилась амплитуда колебаний за время, равное периоду : . Логарифм этого выражения называют логарифмическим декрементом затухания : . В затухающих системах используется также такая величина как добротность : .

    Волновое уравнение.

    Уравнение любой волны есть решение некоторого дифференциального уравнения, называемого волновым . Исходя из физических свойств среды и основных законов механики мы получаем волновое уравнение из явного выражения для уравнения плоской волны.

    Можно записать: – волновое уравнение . Волновому уравнению будет удовлетворять любая волна произвольной частоты , распространяющаяся со скоростью . определяется физическими свойствами среды. В случае плоской волны, распространяющейся в направлении по х, волновое уравнение записывается в виде: .

    Энергия упругой волны.

    Пусть плоская продольная волна распространяется в направлении ОХ в некоторой упругой среде. Её уравнение: . Частицы среды, отклоняясь от положения равновесия, движутся с некоторыми скоростями. Следовательно, они обладают кинетической и потенциальной энергиями. Выделим в среде цилиндрический объем V с площадью основания S и высотой x. Его величина такова, что можем считать скорости частиц и относительное смещение одинаковыми. Энергия, заключённая в этом объёме . Таким образом, плотность энергии упругой волны . Подставим в него уравнение плоской волны, преобразуем и воспользуемся тем, что : . Затем найдём среднюю по периоду плотность энергии : . Из выражения для плотности энергии видно, что её величина меняется со временем от 0 до некоторого максимального значения, а значит, энергия от источников колебания переносится волной из одного места пространства в другое со скоростью Волна осуществляет процесс переноса энергии, но не вещества. Перенос энергии осуществляется посредством сил упругого взаимодействия между частицами среды. Количество энергии, переносимое через некоторую поверхность за единицу времени, называется потоком энергии через эту поверхность: . Для более детальной характеристики процесса переноса энергии используется вектор плотности потока энергии . По величине он равен потоку энергии, переносимой через площадку, перпендикулярную направлению распространения волны, делённому на площадь этой площадки: – последнее – вектор Умова . По направлению он совпадает с направлением распространения волны. Среднее . Модуль этого выражения называется интенсивностью волны .

    Сложение скоростей в СТО.

    В XIX веке классическая механика столкнулась с проблемой распространения этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов. Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона). Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разница между их координатами в одной ИСО - всегда равно их расстоянию в другой инерциальной системе. Вторая идея - принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что-то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом, электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми. Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца.

    Если некоторый объект имеет компоненты скорости относительно системы S и - относительно S", то между ними существует следующая связь:

    В этих соотношениях относительна скорость движения систем отсчёта v направлена вдоль оси x. Релятивистское сложение скоростей, как и преобразования Лоренца, при малых скоростях () переходит в классический закон сложения скоростей.

    Если объект движется со скоростью света вдоль оси x относительно системы S, то такая же скорость у него будет и относительно S": . Это означает, что скорость является инвариантной (одинаковой) во всех ИСО.

    Барометрическая формула.

    Барометрическая формула даёт зависимость атмосферного давления от высоты, отсчитанной от поверхности Земли. Предполагается, что температура атмосферы с высотой не меняется. Для вывода формулы выделим вертикальный цилиндр: поперечное сечение S. В нём выделяется небольшой цилиндрический объём высотой dh. Он находится в равновесии: на него действуют сила тяжести mg, вертикально направленная вверх сила давления газа F1 и вертикально направленная вниз сила давления F2. Их сумма = 0. В проекции: -mg+ F1-. F2=0 . Из уравнения Клапейрона-Менделеева . Интегрируем в пределах от 0 до и получаем: – барометрическая формула , используемая для определения высоты. Изменением в температуре можно пренебречь.

    Давление газа на стенку.

    Распределение Максвелла.

    Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

    В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на , , , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υi, поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

    Скорость – векторная величина. Для проекции скорости на ось х (x-й составляющей скорости) имеем тогда где А1 – постоянная, равная

    Графическое изображение функции показано на рисунке. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).

    Приведённое выражение и график справедливы для распределения молекул газа по x-компонентам скорости. Очевидно, что и по y- и z-компонентам скорости также можно получить:

    Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от , до + ,; y-компонента, в интервале от до + ; z-компонента, в интервале от до +d будет равна произведению вероятностей каждого из условий (событий) в отдельности: где , или ) – это число молекул в параллелепипеде со сторонами , , d , то есть в объёме dV= d , находящемся на расстоянии от начала координат в пространстве скоростей. Эта величина () не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости. Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ. Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

    Объём этого шарового слоя . Общее число молекул в слое: Отсюда следует закон распределения молекул по абсолютным значениям скоростей Максвелла : где – доля всех частиц в шаровом слое объема dV, скорости которых лежат в интервале от υ до υ+dυ. При dυ = 1 получаем плотность вероятности , или функцию распределения молекул по скоростям : Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в единичном интервале скоростей, включающем данную скорость. Обозначим: и получим: График этой функции показан на рисунке. Это и есть распределение Максвелла . Или по-другому

    .

    Энтропия.

    Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы. Понятие энтропии было впервые введено Рудольфом Клаузиусом, который определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T (то есть изменение тепла при постоянной температуре): . Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся изменением тепла, вследствие изменения структуры.

    Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так: ,где dS - приращение (дифференциал) энтропии, а δQ - бесконечно малое приращение количества теплоты. Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

    Энтропия – аддитивная величина, т.е. энтропия системы равна сумме энтропий отдельных её частей.

    Больцман установил связь энтропии с вероятностью данного состояния . Позднее эту связь представил в виде формулы Планк: , где константа k = 1,38×10−23 Дж/К названа Планком постоянной Больцмана, а Ω - (термодинамическая вероятность) статистический вес состояния, является числом возможных микросостояний (способов) с помощью которых можно перейти в данное макроскопическое состояние. Этот постулат, названный Альберт Эйнштейном принципом Больцмана, положил начало статистической механики, которая описывает термодинамические системы, используя статистическое поведение составляющих их компонентов. Принцип Больцмана связывает микроскопические свойства системы (Ω) с одним из её термодинамических свойств (S). Согласно определению, энтропия является функцией состояния, то есть не зависит от способа достижения этого состояния, а определяется параметрами этого состояния. Так как Ω может быть только натуральным числом (1, 2, 3, …), то энтропия Больцмана должна быть неотрицательной - исходя из свойств логарифма.

    Энтропия в открытых системах:

    В силу второго начала термодинамики, энтропия Si замкнутой системы не может уменьшаться (закон неубывания энтропии ). Математически это можно записать так: , индекс i обозначает так называемую внутреннюю энтропию, соответствующую замкнутой системе. В открытой системе возможны потоки тепла, как из системы, так и внутрь неё. В случае наличия потока тепла в систему приходит количество тепла δQ1 при температуре T1 и уходит количество тепла δQ2 при температуре T2. Приращение энтропии, связанное с данными тепловыми потоками, равно:

    В стационарных системах обычно δQ1 = δQ2, T1 > T2, так что dSo < 0. Поскольку здесь изменение энтропии отрицательно, то часто употребляют выражение «приток негэнтропии», вместо оттока энтропии из системы. Негэнтропия определяется таким образом как обратная величина энтропии.

    Суммарное изменение энтропии открытой системы будет равно: dS = dSi + dSo.

    Изучение физики начинают с рассмотрения механического движения. В общем случае тела движутся по кривым траекториям с переменными скоростями. Для их описания используют понятие ускорения. В данной статье рассмотрим, что такое тангенциальное и нормальное ускорение.

    Кинематические величины. Скорость и ускорение в физике

    Кинематика механического движения - это раздел физики, который занимается изучением и описанием перемещения тел в пространстве. Кинематика оперирует тремя главными величинами:

    • пройденный путь;
    • скорость;
    • ускорение.

    В случае движения по окружности используют аналогичные кинематические характеристики, которые приведены к центральному углу окружности.

    С понятием скорости знаком каждый. Она показывает быстроту изменения координат тел, находящихся в движении. Скорость всегда направлена по касательной к линии, вдоль которой тело перемещается (траектории). Далее линейную скорость будем обозначать v¯, а угловую скорость - ω¯.

    Ускорение - это скорость изменения величин v¯ и ω¯. Ускорение - это тоже однако ее направление совершенно не зависит от вектора скорости. Ускорение всегда направлено в сторону действующей на тело силы, которая вызывает изменение вектора скорости. Ускорение для любого типа движения можно рассчитать по формуле:

    Чем сильнее изменится скорость за интервал времени dt, тем больше будет ускорение.

    Касательное и нормальное ускорение

    Предположим, что материальная точка движется по некоторой кривой линии. Известно, что в некоторый момент времени t ее скорость была равна v¯. Поскольку скорость - это касательный к траектории вектор, ее можно представить в следующем виде:

    Здесь v - длина вектора v¯, а u t ¯ - единичный вектор скорости.

    Чтобы вычислить вектор полного ускорения в момент времени t, необходимо найти производную скорости по времени. Имеем:

    a¯ = dv¯ / dt = d (v × u t ¯) / dt

    Поскольку модуль скорости и единичный вектор изменяются со временем, то, пользуясь правилом нахождения производной от произведения функций, получаем:

    a¯ = dv / dt × u t ¯ + d (u t ¯) / dt × v

    Первое слагаемое в формуле называется тангенциальной, или касательной компонентой ускорения, второе слагаемое - это нормальное ускорение.

    Касательное ускорение

    Еще раз запишем формулу для вычисления касательного ускорения:

    a t ¯ = dv / dt × u t ¯

    Это равенство означает, что тангенциальное (касательное) ускорение направлено так же, как вектор скорости в любой точке траектории. Оно численно определяет изменение модуля скорости. Например, в случае прямолинейного движения состоит только из касательной составляющей. Нормальное ускорение при таком типе перемещения равно нулю.

    Причиной появления величины a t ¯ является воздействие внешней силы на движущееся тело.

    В случае вращения с постоянным угловым ускорением α тангенциальная составляющая ускорения может быть вычислена по следующей формуле:

    Здесь r - это радиус вращения рассматриваемой материальной точки, для которой вычисляется величина a t .

    Нормальное или центростремительное ускорение

    Теперь выпишем еще раз вторую компоненту полного ускорения:

    a c ¯ = d (u t ¯) / dt × v

    Из геометрических соображений можно показать, что производная единичного касательного к траектории вектора по времени равна отношению модуля скорости v к радиусу r в момент времени t. Тогда выражение выше запишется так:

    Эта формула нормального ускорения свидетельствует, что оно, в отличие от касательной компоненты, не зависит от изменения скорости, а определяется квадратом модуля самой скорости. Также a c возрастает с уменьшением радиуса вращения при постоянной величине v.

    Нормальное ускорение называют центростремительным потому, что оно направлено от центра масс вращающегося тела к оси вращения.

    Причиной появления этого ускорения является центральная компонента воздействующей на тело силы. Например, в случае вращения планет вокруг нашего Солнца центростремительной силой является гравитационное притяжение.

    Нормальное ускорение тела изменяет только направление скорости. Оно не способно изменить ее модуль. Этот факт является важным его отличием от касательной компоненты полного ускорения.

    Поскольку центростремительное ускорение возникает всегда, когда вектор скорости поворачивается, то оно существует также в случае равномерного вращения по окружности, при котором тангенциальное ускорение равно нулю.

    На практике ощутить на себе влияние нормального ускорения можно, если находиться в машине, когда она совершает затяжной поворот. В этом случае пассажиров прижимает к противоположной направлению поворота двери автомобиля. Это явление - результат действия двух сил: центробежной (смещение пассажиров со своих мест) и центростремительной (давление на пассажиров со стороны двери автомобиля).

    Модуль и направление полного ускорения

    Итак, мы выяснили, что тангенциальная компонента рассматриваемой физической величины направлена по касательной к траектории движения. В свою очередь, нормальная компонента перпендикулярна траектории в данной точке. Это означает, что две компоненты ускорения перпендикулярны друг другу. Их векторное сложение дает вектор полного ускорения. Вычислить его модуль можно по следующей формуле:

    a = √(a t 2 + a c 2)

    Направление вектора a¯ можно определить как относительно вектора a t ¯, так и относительно a c ¯. Для этого следует использовать соответствующую тригонометрическую функцию. Например, угол между полным и нормальным ускорениями равен:

    Решение задачи на определение центростремительного ускорения

    Колесо, которое имеет радиус 20 см, раскручивается с угловым ускорением 5 рад/с 2 в течение 10 секунд. Необходимо определить нормальное ускорение точек, находящихся на периферии колеса, через указанное время.

    Для решения задачи воспользуемся формулой связи между тангенциальным и угловым ускорениями. Получаем:

    Поскольку равноускоренное движение длилось в течение времени t = 10 секунд, то приобретенная за это время линейная скорость была равна:

    v = a t × t = α × r × t

    Полученную формулу подставляем в соответствующее выражение для нормального ускорения:

    a c = v 2 / r = α 2 × t 2 × r

    Остается подставить известные значения в это равенство и записать ответ: a c = 500 м/с 2 .