Взаимно расположенные прямые и плоскости. признак параллельности прямой и плоскости

Выносной элемент.

выносным элементом.



  • а) не иметь общих точек;

Теорема.

Обозначение разрезов

В ГОСТ 2.305-2008 предусмотрены следующие требования к обозначению разреза:

1. Положение секущей плоскости указывают на чертеже линией сечения.

2. Для линии сечения должна применяться разомкнутая линия (толщина от S до 1,5S длина линии 8-20 мм).

3. При сложном разрезе штрихи проводят также у мест пересечения секущих плоскостей между собой.

4. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны наноситься на расстоянии 2-3 мм от внешнего конца штриха.

5. Размеры стрелок должны соответствовать приведенным на рисунке 14.

6. Начальный и конечный штрихи не должны пересекать контур соответствующего изображения.

7. У начала и конца линии сечения, а при необходимости и у мест пересечения секущих плоскостей ставят одну и ту же прописную букву русского алфавита. Буквы наносят около стрелок, указывающих направление взгляда, и в местах пересечения со стороны внешнего угла (рисунок 24).

Рисунок 24 - Примеры обозначения разреза

8. Разрез должен быть отмечен надписью по типу «А-А» (всегда двумя буквами через тире).

9. Когда секущая плоскость совпадает с плоскостью симметрии предмета в целом, а соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими – либо другими изображениями, для горизонтальных, фронтальных и профильных разрезов не отмечают положение секущей плоскости, и разрез надписью не сопровождают.

10. Фронтальным и профильным разрезам, как правило, придают положение, соответствующее принятому для данного предмета на главном изображении чертежа.

11. Горизонтальные, фронтальные и профильные разрезы могут быть расположены на месте соответствующих основных видов.

12. Допускается располагать разрез на любом месте поля чертежа, а также с поворотом с добавлением условного графического обозначения - значка «Повернуто» (рисунок 25).

Рисунок 25 - Условное графическое обозначение – значок «Повернуто»

Обозначение сечений подобно обозначению разрезов и состоит из следов секущей плоскости и стрелки, указывающей направление взгляда, а также буквы, проставляемой с наружной стороны стрелки (рисунок1в, рисунок3). Вынесенное сечение не надписывают и секущую плоскость не показывают, если линия сечения совпадает с осью симметрии сечения, а само сечение расположено на продолжении следа секущей плоскости или в разрыве между частями вида. Для симметричного наложенного сечения секущую плоскость также не показывают. Если сечение несимметричное и расположено в разрыве или является наложенным (рисунок 2 б), линию сечения проводят со стрелками, но буквами не обозначают.

Сечение допускается располагать с поворотом, снабжая надпись над сечением словом «повернуто». Для нескольких одинаковых сечений, относящихся к одному предмету, линии сечений обозначают одной и той же буквой и вычерчивают одно сечение. В случаях, если сечение получается состоящим из отдельных частей, следует применять разрезы.

Прямая общего положения

Прямой общего положения (рис.2.2) называют прямую, не параллельную ни одной из данных плоскостей проекций. Любой отрезок такой прямой проецируется в данной системе плоскостей проекций искаженно. Искаженно проецируются и углы наклона этой прямой к плоскостям проекций.

Рис. 2.2.

Прямые частного положения
К прямым частного положения относятся прямые, параллельные одной или двум плоскостям проекций.
Любую линию (прямую или кривую), параллельную плоскости проекций, называют линией уровня. В инженерной графике различают три основные линии уровня: горизонталь, фронталь и профильную линии.

Рис. 2.3-а

Горизонталью называют любую линию, параллельную горизонтальной плоскости проекций (рис.2.З-а). Фронтальная проекция горизонтали всегда перпендикулярна линиям связи. Любой отрезок горизонтали на горизонтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона горизонтали (прямой) к фронтальной плоскости проекций. В качестве примера на рис.2.З-а дано наглядное изображение и комплексный чертеж горизонтали h , наклоненной к плоскости П 2 под углом b .
Рис. 2.3-б

Фронталью называют линию, параллельную фронтальной плоскости проекций (рис.2.3-б). Горизонтальная проекция фронтали всегда перпендикулярна линиям связи. Любой отрезок фронтали на фронтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона фронтали (прямой) к горизонтальной плоскости проекций (угол a ).
Рис. 2.3-в

Профильной линией называют линию, параллельную профильной плоскости проекций (рис.2.З-в). Горизонтальная и фронтальная проекции профильной линии параллельны линиям связи этих проекций. Любой отрезок профильной линии (прямой) проецируется на профильную плоскость в истинную величину. На эту же плоскость проецируются в истинную величину и углы наклона профильной прямой к плоскостям проекций П 1 и П 2 . При задании профильной прямой на комплексном чертеже нужно обязательно указать две точки этой прямой.

Прямые уровня, параллельные двум плоскостям проекций, будут перпендикулярны третьей плоскости проекций. Такие прямые называют проецирующими. Различают три основные проецирующие прямые: горизонтально, фронтально и профильно проецирующие прямые.
Рис. 2.3-г Рис. 2.3-д Рис. 2.3-е

Горизонтально проецирующей прямой (рис.2.З-г) называют прямую, перпендикулярную плоскости П 1 . Любой отрезок этой прямой проецируется на плоскость П П 1 - в точку.

Фронтально проецирующей прямой (рис.2.З-д) называют прямую, перпендикулярную плоскости П 2 . Любой отрезок этой прямой проецируется на плоскость П 1 без искажения, а на плоскость П 2 - в точку.

Профильно проецирующей прямой (рис.2.З-е) называют прямую, перпендикулярную плоскости П 3 , т.е. прямую, параллельную плоскостям проекций П 1 и П 2 . Любой отрезок этой прямой проецируется на плоскости П 1 и П 2 без искажения, а на плоскость П 3 - в точку.

Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h//П1)(рис.6.4).

Рисунок 6.4 Горизонталь

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f//П2)(рис.6.5).

Рисунок 6.5 Фронталь

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р//П3) (рис.6.6). Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

Рисунок 6.6 Профильная прямая

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.6.7). Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Рисунок 6.7 Линия наибольшего ската

Кинематический способ образования поверхностей. Задание поверхности на чертеже.

В инженерной графике поверхность рассматривают как множество последовательных положений линии, перемещающейся в пространстве по определенному закону. В процессе образования поверхности линия 1 может оставаться неизменной или менять свою форму.
Для наглядности изображения поверхности на комплексном чертеже закон перемещения целесообразно задавать графически в виде семейства линий (а, b, с). Закон перемещения линии 1 может быть задан двумя (а и b) или одной (а) линией и дополнительными условиями, уточняющими закон перемещения 1.
Перемещающаяся линия 1 называется образующей, неподвижные линии a, b, c - направляющими.
Процесс образования поверхности рассмотрим на примере, приведенном на рис.3.1.
Здесь в качестве образующей взята прямая 1. Закон перемещения образующей задан направляющей а и прямой b. При этом имеется в виду, что образующая 1 скользит по направляющей а, все время оставаясь параллельной прямой b.
Такой способ образования поверхностей называют кинематическим. С его помощью можно образовывать и задавать на чертеже различные поверхности. В частности, на рис.3.1 изображен самый общий случай цилиндрической поверхности.

Рис. 3.1.

Другим способом образования поверхности и ее изображения на чертеже является задание поверхности множеством принадлежащих ей точек или линий. При этом точки и линии выбирают так, чтобы они давали возможность с достаточной степенью точности определять форму поверхности и решать на ней различные задачи.
Множество точек или линий, определяющих поверхность, называют ее каркасом.
В зависимости от того, чем задается каркас поверхности, точками или линиями, каркасы подразделяют на точечные и линейные.
На рис.3.2 показан каркас поверхности, состоящий из двух ортогонально расположенных семейств линий a1, a2, a3, ..., an и b1, b2, b3, ..., bn.

Рис. 3.2.

Конические сечения.

КОНИЧЕСКИЕ СЕЧЕНИЯ, плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы.

Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.

РАННЯЯ ИСТОРИЯ

Открывателем конических сечений предположительно считается Менехм (4 в. до н.э.), ученик Платона и учитель Александра Македонского. Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце 4 в. до н.э., были утеряны, но материалы из них вошли в знаменитые Конические сечения Аполлония Пергского (ок. 260–170 до н.э.), которые сохранились до нашего времени. Аполлоний отказался от требования перпендикулярности секущей плоскости образующей конуса и, варьируя угол ее наклона, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых – эллипс, парабола и гипербола.

В своих построениях Аполлоний использовал двухполостной круговой конус (как на рис. 1), поэтому впервые стало ясно, что гипербола – кривая с двумя ветвями. Со времен Аполлония конические сечения делятся на три типа в зависимости от наклона секущей плоскости к образующей конуса. Эллипс (рис. 1,а) образуется, когда секущая плоскость пересекает все образующие конуса в точках одной его полости; парабола (рис. 1,б) – когда секущая плоскость параллельна одной из касательных плоскостей конуса; гипербола (рис. 1,в) – когда секущая плоскость пересекает обе полости конуса.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс.

Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большей и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

рис. 2 Эллипсис

Гипербола.

При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рис. 3,а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (PўV2Qў) мы вычерчиваем, предварительно поменяв ролями шпеньки F1 и F2.

рис. 3 гипербола

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б. Угловые коэффициенты этих прямых равны ± (v1v2)/(V1V2), где v1v2 – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F1F2; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном

от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

Парабола.

Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LLў (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LLў, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, т.е. PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

ОТВЕТЫ НА БИЛЕТЫ: № 1 (не полностью), 2 (не полностью), 3 (не полностью), 4, 5, 6, 7, 12, 13, 14 (не полностью), 16, 17, 18, 20, 21, 22, 23, 26,

Выносной элемент.

При выполнении чертежей в некоторых случаях появляется необходимость в построении дополнительного отдельного изображения какой-либо части предмета, требующей пояснений в отношении формы, размеров или других данных. Такое изображение называется выносным элементом. Его выполняют обычно увеличенным. Выносной элемент может быть выложен как вид или как разрез.

При построении выносного элемента соответствующее место основного изображения отмечают замкнутой сплошной тонкой линией, обычно овалом или окружностью, и обозначают заглавной буквой русского алфавита на полке линии-выноски. У выносного элемента делается запись по типу А (5: 1). На рис. 191 приведен пример выполнения выносного элемента. Его располагают возможно ближе к соответствующему месту на изображении предмета.

1. Метод прямоугольного (ортогонального) проецирования. Основные инвариантные свойства прямоугольного проецирования. Эпюр Монжа.

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рис. 58). Это объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция - катетом: А"В" = ABcos a.

При прямоугольном проецировании прямой угол проецируется в натуральную величину, когда обе стороны его параллельны плоскости проекций, и тогда, когда лишь одна из его сторон параллельна плоскости проекций, а вторая сторона не перпендикулярна этой плоскости проекций.

Взаимное расположение прямой и плоскости.

Прямая и плоскость в пространстве могут :

  • а) не иметь общих точек;
  • б) иметь ровно одну общую точку;
  • в) иметь хотя бы две общие точки.

На рис. 30 изображены все эти возможности.

В случае а) прямая b параллельна плоскости : b || .

В случае б) прямая l пересекает плоскость в одной точке О; l = О.

В случае в) прямая а принадлежит плоскости : а или а .

Теорема. Если прямая b параллельна хотя бы одной прямой а, принадлежащей плоскости , то прямая параллельна плоскости .

Предположим, что прямая m пересекает плоскость в точке Q.Если m перпендикулярна каждой прямой плоскости , проходящей через точку Q, то прямая m называется перпендикулярной к плоскости .

Трамвайные рельсы иллюстрируют принадлежность прямых плоскости земли. Линии электропередачи параллельны плоскости земли, а стволы деревьев могут служить примерами прямых, пересекающих поверхность земли, некоторые перпендикулярные плоскости земли, другие - не перпендикулярные (наклонные).


В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей. Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации. В заключении даны основные способы задания плоскости в пространстве.

Навигация по странице.

Плоскость – основные понятия, обозначения и изображение.

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости . Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q , прямые а и d . Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В . Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

Взаимное расположение плоскости и точки.

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А , то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна. Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А , В и С , то ее можно обозначить АВС .

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости. Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать. При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

Прямая и плоскость в пространстве.

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М . При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью .

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости .

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости . Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости .

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями . Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей .

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей , чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Способы задания плоскости.

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки .

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

  • через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);
  • через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых . Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые .


В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой .

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать

Прямая может принадлежать и не принадлежать плоскости. Она принадлежит плоскости, если хотя бы две точки ее лежат на плоскости. На рисунке 93 показана плоскость Sum (axb). Прямая l принадлежит плоскости Sum, так как ее точки 1 и 2 принадлежат этой плоскости.

Если прямая не принадлежит плоскости, она может быть параллельной ей или пересекать ее.

Прямая параллельна плоскости, если она параллельна другой прямой, лежащей в этой плоскости. На рисунке 93 прямая m || Sum , так как она параллельна прямой l , принадлежащей этой плоскости.

Прямая может пересекать плоскость под различными углами и, в частности, быть перпендикулярной ей. Построение линий пересечения прямой с плоскостью приведено в §61.

Рисунок 93 - Прямая, принадлежащая плоскости

Точка по отношению к плоскости может быть расположена следующим образом: принадлежать или не принадлежать ей. Точка принадлежит плоскости, если она расположена на прямой, расположенной в этой плоскости. На рисунке 94 показан комплексный чертеж плоскости Sum, заданной двумя параллельными прямыми l и п. В плоскости расположена линия m. Точка A лежит в плоскости Sum, так как она лежит на прямой m. Точка В не принадлежит плоскости, так как ее вторая проекция не лежит на соответствующих проекциях прямой.

Рисунок 94 - Комплексный чертеж плоскости, заданной двумя параллельными прямыми

Коническая и цилиндрическая поверхности

К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей m. Особенностью образования конической поверхности является то, что при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рисунок 95, а). Определитель конической поверхности включает вершину S и направляющую m, при этом l "~S; l "^ m.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рисунок 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l , при этом l" || S; l" ^ m.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рисунке 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рисунок 95, в или горизонтали h на рисунке 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.



Рисунок 95 - Коническая и цилиндрическая поверхности

Торсовые поверхности

Торсовой называется поверхность, образованная прямолинейной образующей l , касающейся при своем движении во всех своих положениях некоторой пространственной кривой т, называемой ребром возврата (рисунок 96). Ребро возврата полностью задает торс и является геометрической частью определителя поверхности. Алгоритмической частью служит указание касательности образующих к ребру возврата.

Коническая поверхность является частным случаем торса, у которого ребро возврата т выродилось в точку S - вершину конической поверхности. Цилиндрическая поверхность - частный случай торса, у которого ребро возврата - точка в бесконечности.

Рисунок 96 – Торсовая поверхность

Гранные поверхности

К гранным относятся поверхности, образованные перемещением прямолинейной образующей l по ломаной направляющей m. При этом если одна точка S образующей неподвижна, создается пирамидальная поверхность (рисунок 97), если образующая при перемещении параллельна заданному направлению S, то создается призматическая поверхность (рисунок 98).

Элементами гранных поверхностей являются: вершина S (у призматической поверхности она находится в бесконечности), грань (часть плоскости, ограниченная одним участком направляющей m и крайними относительно него положениями образующей l ) и ребро (линия пересечения смежных граней).

Определитель пирамидальной поверхности включает в себя вершину S, через которую проходят образующие и направляющие: l" ~ S; l ^ т.

Определитель призматической поверхности, кроме направляющей т, содержит направление S, которому параллельны все образующие l поверхности: l||S; l^ т.



Рисунок 97 - Пирамидальная поверхность

Рисунок 98 - Призматическая поверхность

Замкнутые гранные поверхности, образованные некоторым числом (не менее четырех) граней, называются многогранниками. Из числа многогранников выделяют группу правильных многогранников, у которых все грани правильные и конгруэнтные многоугольники, а многогранные углы при вершинах выпуклые и содержат одинаковое число граней. Например: гексаэдр - куб (рисунок 99, а), тетраэдр - правильный четырехугольник (рисунок 99, 6) октаэдр - многогранник (рисунок 99, в). Форму различных многогранников имеют кристаллы.

Рисунок 99 - Многогранники

Пирамида - многогранник, в основании которого лежит произвольный многоугольник, а боковые грани - треугольники с общей вершиной S.

На комплексном чертеже пирамида задается проекциями ее вершин и ребер с учетом их видимости. Видимость ребра определяется с помощью конкурирующих точек (рисунок 100).

Рисунок 100 – Определение видимости ребра с помощью конкурирующих точек

Призма - многогранник, у которого основание - два одинаковых и взаимно параллельных многоугольника, а боковые грани - параллелограммы. Если ребра призмы перпендикулярны плоскости основания, такую призму называют прямой. Если у призмы ребра перпендикулярны какой-либо плоскости проекций, то боковую поверхность ее называют проецирующей. На рисунке 101 дан комплексный чертеж прямой четырехугольной призмы с горизонтально проецирующей поверхностью.

Рисунок 101 - Комплексный чертеж прямой четырехугольной призмы с горизонтально проецирующей поверхностью

При работе с комплексным чертежом многогранника приходится строить на его поверхности линии, а так как линия есть совокупность точек, то необходимо уметь строить точки на поверхности.

Любую точку на гранной поверхности можно построить с помощью образующей, проходящей через эту точку. На рисунке 100 в грани ACS построена точка М с помощью образующей S-5.

Винтовые поверхности

К винтовым относятся поверхности, создаваемые при винтовом движении прямолинейной образующей. Линейчатые винтовые поверхности называют геликоидами.

Прямой геликоид образуется движением прямолинейной образующей i по двум направляющим: винтовой линии т и ее оси i ; при этом образующая l пересекает винтовую ось под прямым углом (рисунок 102, а). Прямой геликоид используется при создании винтовых лестниц, шнеков, а также силовых резьбах, в станках.

Наклонный геликоид образуется движением образующей по винтовой направляющей т и ее оси i так, что образующая l пересекает ось i под постоянным углом φ, отличным от прямого, т. е. в любом положении образующая l параллельна одной из образующих направляющего конуса с углом при вершине, равным 2φ (рисунок 102, б). Наклонные геликоиды ограничивают поверхности витков резьбы.

Рисунок 102 - Геликоиды

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i , представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i . Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рисунке 103 точка М построена на параллели h 4 .

Рисунок 103 – Построение точки на криволинейной поверхности

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рисунок 104, а ). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рисунок 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рисунок 104, в ). Точка A на поверхности сферы принадлежит главному меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Рисунок 104 - Образование поверхностей вращения

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рисунок 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рисунок 105, б). Открытый тор называется еще кольцом.

Рисунок 105 – Образование тора

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рисунок 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рисунок 106, б ) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рисунок 106, в ) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рисунок 106, г ) - вращением гиперболы вокруг действительной оси.

Рисунок 106 – Образование поверхностей вращения кривыми второго порядка

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см рисунки 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см рисунок 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Чтобы получить круговой конус (см рисунок 104, а ), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см рисунок 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Расположение

Признак: если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

1. если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

2. если одна из 2х прямых параллельна данной, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ. ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ

Расположение

1. плоскости имеют хотя бы 1 общую точку, т.е. пересекаются по прямой

2. плоскости не пересекаются, т.е. не имеют ни 1 общей точки, в этом случае они наз параллельными.

признак

если 2 пересекающиеся прямые 1 плоскости соответственно параллельны 2 прямым другой плоскости, то эти плоскости параллельны.

Св-во

1. если 2 параллельные плоскости пересечены 3, то линии их пересечения параллельны

2. отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ. ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.

Прямые наз перпендиулярными , если они пересекаются под <90.

Лемма: если 1 из 2 параллельных прямых перпендикулярна к 3й прямой, то и другая прямая перпендикулярна к этой прямой.

Прямая наз перпендикулярной к плоскости, если она перпендикулярна к любой прямой в этой плоскости.

Теорема: если 1 их 2х параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Теорема: если 2 прямые перпендикулярны к плоскости, то они параллельны.

Признак

Если прямая перпендикулярна к 2м пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.



ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ

Построим плоскость и т.А, не принадлежащ плоскости. Их т.А проведем прямую, перпендик плоскости. Точку пересечения прямой с плоскостью обознач Н. Отрезок АН – перпендикуляр, проведенныйиз т.А к плоскости. Т.Н – основание перпендикуляра. Озьмем в плоскости т.М, не совпадающую с Н. Отрезок АМ – наклонная, проведенная из т.А к плоскости. М – основание наклонной. Отрезок МН – проекция наклонной на плоскость. Перпендикуляр АН – расстояние от т.А до плоскости. Любое расстояние – это часть перпендикуляра.

Теорема о 3 перпендикулярах:

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ

Углом между прямой и плоскостью наз угол между этой прямой и ее проекцией на плоскости.

ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Двугранным углом наз фигура, образованная прямой и 2 полуплоскостями с общей границей а, не принадлеж одной плоскости.

Граница а – ребро двугранного угла. Полуплоскости – грани двугран угла. Для того, чтобы измерить двугранный угол. Нужно построить внутри него линейный угол. Отметим на ребре двугран угла какую-нибудь точку и в каждой грани из этой точки проведем луч, перпендикулярно к ребру. Образованный этими лучами угол наз линейным глом двугран угла. Их внутри двугран угла может быть бесконечно много. Все они имеют одинак величину.

ПЕРПЕНДИКУЛЯРНОСТЬ ДВУХ ПЛОСКОСТЕЙ

Две пересекающиеся плоскости наз перпендикулярными, если угол между ними равен 90.

Признак:

Если 1 из 2х плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

МНОГОГРАННИКИ

Многогранник – поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. Грани – многоугольники, из которых составлены многогранники. Ребра – стороны граней. Вершины – концы ребер. Диагональю многогранника наз отрезок, соединяющий 2 вершины, не принадлежащие 1 грани. Плоскость, по обе стороны от которой имеются точки многогранника, наз. секущй плоскостью. Общая часть многогранника и секущей площади наз сечением многогранника. Многогранники бывают выпуклые и вогнутые. Многогранник наз выпуклым , если он расположен по одну сторону от плоскости каждой его грани (тетраэдр, параллепипед, октаэдр). В выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360.

ПРИЗМА

Многогранник, составленный из 2х равных многоугольников, расположенных в параллельных плоскостях и п - параллелограммов наз призмой.

Многоугольники А1А2..А(п) и В1В2..В(п) – основания призмы . А1А2В2В1…-параллелограмы , А(п)А1В1В(п) –боковые грани. Отрезки А1В1, А2В2..А(п)В(п) – боковые ребра. В зависимости от многоугольника, лежащего в основании призмы, призма наз п-угольной. Перпендикуляр, проведенный из любой точки одного основания к плоскости другого основания наз высотой. Если боковые ребра призмы перпендикулярны к основанию, то призма – прямая , а если не перпендикулярны – то наклонная. Высота прямой призмы равна длине ее бокового ребра. Прямая призманаз правильной , если ее основание – правильные многоугольники, все боковые грани – равные прямоугольники.

ПАРАЛЛЕПИПЕД

АВСД//А1В1С1Д1, АА1//ВВ1//СС1//ДД1, АА1=ВВ1=СС1=ДД1 (по св-ву параллельных плоскостей)

Параллепипед состоит из 6 параллелограммов. Параллелограммы наз гранями. АВСД и А1В1С1Д1 – основания, остальные грани наз боковыми. Точки А В С Д А1 В1 С1 Д1 –вершины. Отрезки, соединяющие вершины – ребра. АА1, ВВ1, СС1, ДД1 – боковые ребра.

Диагональю параллепипеда – наз отрезок, соединяющий 2 вершины, не принадлежащие 1 грани.

Св-ва

1. противоположные грани параллепипеда параллельны и равны. 2. Диагонали параллепипеда пересекаются в одной точке и делятся этой точкой пополам.

ПИРАМИДА

Рассмотрим многоугольник А1А2..А(п), точку Р, не лежащую в плоскости этого многоугольника. Соединим точку Р с вершинами многоугольника и получим п треугольников: РА1А2, РА2А3….РА(п)А1.

Многогранник, составленный из п-угольника и п-треугольников наз пирамидой. Многоугольник – основание. Треугольники – боковые грани. Р – вершина пирамиды. Отрезки А1Р, А2Р..А(п)Р – боковые ребра. В зависимости от многоугольника, лежащего в основании, пирамида наз п-угольной. Высотой пирамиды наз перпендикуляр, проведенный из вершины к плоскости основания. Пирамида наз правильной , если в ее основании лежит правильный многоугольник и высота попадает в центр основания. Апофема – высота боковой грани правильной пирамиды.

УСЕЧЕННАЯ ПИРАМИДА

Рассмотрим пирамиду РА1А2А3А(п). проведем секущую плоскость, параллельную основанию. Эта плоскость делит нашу пирамиду на 2 части: верхняя – пирамида, подобная данной, нижняя – усеченная пирамида. Боковая поверхность состоит из трапеции. Боковые ребра соединяют вершины оснований.

Теорема: площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Выпуклый многогранник наз правильным , если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и тоже число ребер. Примером правильного многогранника явл куб. Все его грани- равные квадраты, и в каждой вершине сходится 3 ребра.

Правильный тетраэдр составлен их 4 равносторонних треугольников. Каждая вершина – вершина 3 треугольников. Сумма плоских углов при каждой вершине 180.

Правильный октаэдр сост из 8 равносторонник треугольников. Каждая вершина – вершина 4 треугольников. Сумма плоских углов при каждой вершине =240

Правильный икосаэдр сост из 20 равносторонних треугольников. Каждая вершина – вершина 5 треугольник. Сумма плоских углов при каждой вершине 300.

Куб сост из 6 квадратов. Каждая вершина – вершина 3 квадратов. Сумма плоских углов при каждой вершине =270.

Правильный додекаэдр сост из 12 правильных пятиугольников. Каждая вершина – вершина 3 правильных пятиугольников. Сумма плоских углов при каждой вершине =324.

Других видов правильных многогранников нет.

ЦИЛИНДР

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 наз цилиндром. Круги L и L1 наз основаниями цилиндра. Отрезки ММ1, АА1 – образующие. Образующие сост цилиндрическую или боковую поверхность цилиндра. Прямая, соед центры оснований О и О1 наз осью цилиндра. Длина образующей – высота цилиндра. Радиус основания (r) –радиус цилиндра.

Сечения цилиндра

Осевое проходит через ось и диаметр основания

Перпендикулярное к оси

Цилиндр – это тело вращения. Он получается вращением прямоугольника вокруг 1 из сторон.

КОНУС

Рассмотрим окружность (о;r) и прямую ОР перпендикулярную к плоскости этой окружности. Через каждую точку окружности L и т.Р проведем отрезки, их бесконечно много. Они образуют коническую поверхность и наз образующими.

Р- вершина , ОР – ось конической поверхности .

Тело, ограниченное конической поверхностью и кругом с границей L наз конусом. Круг – основание конуса. Вершина конической поверхности – вершина конуса. Образующие коническую поверхность – образующие конуса. Коническая поверхность – боковая поверхность конуса. РО – ось конуса. Расстояние от Р до О – высота конуса. Конус – это тело вращения. Он получается вращением прямоуг треугольника вокруг катета.

Сечение конуса

Осевое сечение

Сечение перпендикулярное оси

СФЕРА И ШАР

Сферой наз поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Данная точка – центр сферы. Данной расстояние – радиус сферы.

Отрезок, соединяющ 2 точки сферы и проходящий через ее центр наз диаметром сферы.

Тело, ограниченное сферой наз шаром. Центр, радиус и диаметр сферы наз центром, радиусом и диаметром шара.

Сфера и шар –это тела вращения. Сфера получается вращением полуокружности вокруг диаметра, а шар получается вращением полукруга вокруг диаметра.

в прямоугольной системе координат уравнение сферы радиуса R с центром С(х(0), у(0), Z(0) имеет вид (х-х(0))(2)+(у-у(0))(2)+(z-z(0))(2)= R(2)

Взаимное положение прямой и плоскости определяется количествомобщих точек:

1) если прямая имеет две общие точки с плоскостью, то она принадлежит этой плоскости,

2) если прямая имеет одну общую точку с плоскостью, то прямая пересекает плоскость,

3) если точка пересечения прямой с плоскостью удалена в бесконечность, то прямая и плоскость параллельны.

Задачи, в которых определяется взаимное расположение различных геометрических фигур относительно друг друга, называются позиционными задачами.

Прямая принадлежащая плоскости рассматривалась ранее.

Прямая параллельна плоскости , если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Чтобы построить такую прямую, необходимо в плоскости задать любую прямую и параллельно ей провести требуемую.

Рис. 1.53 Рис. 1.54 Рис.1.55

Пусть через точку А (рис. 1.53) необходимо провести прямую АВ , параллельную плоскости Q , заданную треугольником CDF. Для этого через фронтальную проекцию точки а / точки А проведем фронтальную проекцию а / в / искомой прямой параллельно фронтальной проекции любой прямой, лежащей в плоскости Р, например, прямой CD (а / в / !! с / д / ). Через горизонтальную проекцию а точки А параллельно сд проводим горизонтальную проекцию ав искомой прямой АВ (ав11 сд). Прямая АВ параллельна плоскости Р, заданной треугольником CDF.


Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна плоскости. Рассмотрим свойства проекций такой прямой.

Рис. 1.56 Рис. 1.57

Прямая перпендикулярна плоскости (частный случай пересечения прямой с плоскостью) если она перпендикулярна какой-либо прямой, лежащей в плоскости. Для построения проекций перпендикуляра к плоскости, находящейся в общем положении, этого недостаточно без преобразования проекций. Поэтому вводят дополнительное условие: прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся главным линиям (для построения проекций используется условие проецирования прямого угла). В этом случае: горизонтальная и фронтальная проекции перпендикуляра перпендикулярны соответственно горизонтальной проекции горизонтали и фронтальной проекции фронтали данной плоскости общего положения (рис. 1.54). При задании плоскости следами проекции перпендикуляра перпендикулярны соответственно фронтальная – фронтальному следу, горизонтальная – горизонтальному следу плоскости (рис. 1.55).

Пересечение прямой с проецирующей плоскостью. Рассмотрим прямую, пересекающую плоскость , когда плоскость находится в частном положении.

Плоскость, перпендикулярная плоскости проекций (проецирующая плоскость), проецируется на нее в виде прямой линии. На этой прямой (проекции плоскости) должна находиться соответствующая проекция точки, в которой некоторая прямая пересекает эту плоскость (рис.1.56).



На рисунке 1.56 фронтальная проекция точки К пересечения прямой АВ с треугольником СDE определяется в пересечении их фронтальных проекций, т.к. треугольник СDE проецируется на фронтальную плоскость в виде прямой линии. Находим горизонтальную проекцию точки пересечения прямой с плоскостью (она лежит на горизонтальной проекции прямой). Способом конкурирующих точек, определяем видимость прямой АВ относительно плоскости треугольника СDE на горизонтальной плоскости проекций.

На рисунке 1.59 изображена горизонтально-проецирующая плоскость P и прямая общего положения АВ . Т.к. плоскость Р перпендикулярна горизонтальной плоскости проекций, то все, что в ней находится, на горизонтальную плоскость проекций проецируется на ее след, в том числе и точка ее пересечения с прямой АВ . Следовательно, на комплексном чертеже имеем горизонтальную проекцию точки пересечения прямой с плоскостью Р . По принадлежности точки прямой, находим фронтальную проекцию точки пересечения прямой АВ с плоскость Р . Определяем видимость прямой на фронтальной плоскости проекций.

Рис. 1.58 Рис. 1.59


На рисунке 1.58 дан комплексный чертеж построения проекций точки пересечения прямой АВ с плоскостью горизонтального уровня G . Фронтальный след плоскости G является ее фронтальной проекцией. Фронтальная проекция точки пересечения плоскости G с прямой АВ определятся в пересечении фронтальной проекции прямой и фронтального следа плоскости. Имея фронтальную проекцию точки пересечения, находим горизонтальную проекцию точки пересечения прямой АВ с плоскостью G .

На рисунке 1.57 изображена плоскость общего положения, заданная треугольником CDE и фронтально-проецирующая прямая АВ ? пересекающая плоскость в точке K. Фронтальная проекция точки – k / совпадает с точками a / и b / . Для построения горизонтальной проекции точки пересечения проведем через точку K в плоскости CDE прямую (например, 1-2 ). Построим ее фронтальную проекцию, а затем горизонтальную. Точка K является точкой пересечения прямых AB и 1-2. То есть точка K одновременно принадлежит прямой AB и плоскости треугольника и, следовательно, является точкой их пересечения.

Пересечение двух плоскостей. Прямая линия пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям, или одной точкой, принадлежащей двум плоскостям, и известным направлением линии. В обоих случаях задача заключается в нахождении точки, общей для двух плоскостей.

Пересечение проецирующих плоскостей. Две плоскости могут быть параллельны между собой или пересекаться. Рассмотрим случаи взаимного пересечения плоскостей.

Прямая линия, получаемая при взаимном пересечении двух плоскостей, вполне определяется двумя точками, из которых каждая принадлежит обеим плоскостям, следовательно, необходимо и достаточно найти эти две точки, принадлежащей линии пересечения двух заданных плоскостей.

Следовательно, в общем случае для построения линии пересечения двух плоскостей необходимо найти какие-либо две точки, каждая из которых принадлежит обеим плоскостям. Эти точки и определяют линию пересечения плоскостей. Для нахождения каждой из этих двух точек обычно приходится выполнять специальные построения. Но если хотя бы одна из пересекающихся плоскостей перпендикулярна (или параллельна) к какой-либо плоскости проекций, то построение проекции линии их пересечения упрощается.

Рис. 1.60 Рис. 1.61

Если плоскости, заданны следами, то естественно искать точки, определяющие прямую пересечения плоскостей, в точках пересечения одноименных следов плоскостей попарно: прямая, проходящая через эти точки, является общей для обеих плоскостей, т.е. их линией пересечения.

Рассмотрим частные случаи расположения одной (или обеих) из пересекающихся плоскостей.

На комплексном чертеже (рис.1.60) изображены горизонтально-проецирующие плоскости P и Q. Тогда горизонтальная проекция их линии пересечения вырождается в точку, а фронтальная проекция – в прямую, перпендикулярную оси оx.

На комплексном чертеже (рис. 1.61) изображены плоскости частного положения: плоскость Р перпендикулярна горизонтальной плоскости проекций (горизонтально-проецирующая плоскость) и плоскость Q - плоскость горизонтального уровня. В этом случая, горизонтальная проекция их линии пересечения совпадет с горизонтальным следом плоскости Р , а фронтальная – с фронтальным следом плоскости Q .

В случае задания плоскостей следами легко установить, что эти плоскости пересекаются: если хотя бы одна пара одноименных следов пересекается, то плоскости пересекаются между собой.


Изложенное относится к плоскостям, заданных пересекающимися следами. Если же обе плоскости имеют на горизонтальной и фронтальной плоскостях следы, параллельные друг другу, то эти плоскости могут быть параллельны либо пересекаться. О взаимном положении таких плоскостей можно судить, построив третью проекцию (третий след). Если следы обеих плоскостей на третьей проекции так же параллельны, то плоскости параллельны между собой. Если следы на третьей плоскости пересекаются, то заданные в пространстве плоскости пересекаются.

На комплексном чертеже (рис.1.62) изображены фронтально-проецирующие плоскости, заданные треугольником АВС и DEF . Проекция линии пересечения на фронтальной плоскости проекций – точка, т.е. так как треугольники перпендикулярны фронтальной плоскости проекций, то и их линия пересечения так же перпендикулярна фронтальной плоскости проекций. Следовательно горизонтальная проекции линии пересечения треугольников (12 ) перпендикулярна оси оx. Видимость элементов треугольников на горизонтальной плоскости проекции определяется с помощью конкурирующих точек (3,4).

На комплексном чертеже (рис. 1.63) заданы две плоскости: одна из которых треугольником АВС общего положения, другая – треугольником DEF перпендикулярна фронтальной плоскости проекций, т.е. находящийся в частном положении (фронтально-проецирующий). Фронтальная проекция линии пересечения треугольников (1 / 2 / ) находится исходя из общих точек, одновременно принадлежащих обоим треугольникам (все, что находится во фронтально- проецирующем треугольнике DEF на фронтальной проекции выльется в линию – проекцию его на фронтальную плоскость, в том числе и линия его пересечения с треугольником АВС. По принадлежности точек пересечения сторонам треугольника АВС , находим горизонтальную проекцию линии пересечения треугольников. Способом конкурирующих точек определяем видимость элементов треугольников на горизонтальной плоскости проекций.

Рис. 1.63 Рис. 1.64

На рисунке 1.64 дан комплексный чертеж двух плоскостей, заданных треугольником общего положения АВС и горизонтально-проецирующая плоскость Р , заданная следами. Так как плоскость Р – горизонтально- проецирующая, то все, что в ней находится, в том числе и линия ее пересечения с плоскостью треугольника АВС , на горизонтальной проекции совпадет с ее

горизонтальным следом. Фронтальную проекцию линии пересечения данных плоскостей находим из условия принадлежности точек элемента (сторонам) плоскости общего положения.

В случае задания плоскостей общего положения не следами, то для получения линии пересечения плоскостей последовательно находится точка встречи стороны одного треугольника с плоскостью другого треугольника. Если плоскости общего положения заданы не треугольниками, то линию ппересечения таких плоскостей можно найти путем введения поочередно двух вспомогательных секущих плоскостей – проецирующих (для задания плоскостей треугольниками) или уровня для всех других случаев.

Пересечение прямой общего положения с плоскость общего положения. Ранее были рассмотрены случаи пересечения плоскостей, когда одна из них являлась проецирующей. На основе этого мы можем найти точку пересечения прямой общего положения с плоскостью общего положения, путем введения дополнительной проецирующей плоскости-посредника.

Прежде чем рассматривать пересечение плоскостей общего положения, рассмотрим пересечение прямой общего положения с плоскостью общего положения.

Для нахождения точки встречи прямой общего положения с плоскостью общего положения необходимо:

1) прямую заключить во вспомогательную проецирующую плоскость,

2) найти линию пересечения заданной и вспомогательных плоскостей,


определить общую точку, принадлежащую одновременно двум плоскостям (это их линия пересечения) и прямой.

Рис. 1.65 Рис. 1.66

Рис. 1.67 Рис. 1.68

На комплексном чертеже (рис. 1.65) изображен треугольник СDE общего положения и прямая АВ общего положения. Для нахождения точки пересечения прямой с плоскостью, заключим прямую АВ Q . Найдем линию пересечения (12 ) плоскости- посредника Q и заданной плоскости СDE . При построении горизонтально проекции линии пересечения найдется общая точка К , одновременно принадлежащая двум плоскостям и заданной прямой АВ . Из принадлежности точки прямой находим фронтальную проекцию точки пересечения прямой с заданной плоскостью. Видимость элементов прямой на плоскостях проекций, определяем с помощью конкурирующих точек.

На рисунке 1.66 показан пример нахождения точки встречи прямой АВ , являющейся горизонталью (прямая параллельна горизонтальной плоскости проекций) и плоскости Р , общего положения, заданной следами. Для нахождения точки их пересечения, прямая АВ заключается в горизонтально- проецирующую плоскость Q. Далее поступают, как и в выше изложенном примере.


Для нахождения точки встречи горизонтально-проецирующей прямой АВ с плоскостью общего положения (рис. 1.67), через точку встречи прямой с плоскостью (ее горизонтальная проекция совпадает с горизонтальной проекцией самой прямой) проводим горизонталь (т.е. привязываем точку пересечения прямой с плоскостью в плоскость Р ). Найдя фронтальную проекцию проведенной горизонтали в плоскости Р , отмечаем фронтальную проекцию точки встречи прямой АВ с плоскостью Р.

Для нахождения линии пересечения плоскостей общего положения, заданных следами достаточно отметить две общие точки, одновременно принадлежащие обеим плоскостям. Такими точками являются точки пересечения их следов (рис.1.68).

Для нахождения линии пересечения плоскостей общего положения, заданных двумя треугольниками (рис. 1.69), последовательно находим точку

встречи стороны одного треугольника с плоскостью другого треугольника. Взяв любые две стороны из любого треугольника, заключив их в проецирующие плоскости посредники, находятся две точки, одновременно принадлежащие обоим треугольникам – линия их пересечения.

На рисунке 1.69 дан комплексный чертеж треугольников ABC и DEF общего положения. Для нахождения линии пересечения данных плоскостей:

1. Заключаем сторону ВС треугольника АВС во фронтально- проецирующую плоскость S (выбор плоскостей совершенно произвольный).

2. Находим линию пересечения плоскости S и плоскости DEF – 12 .

3. Отмечаем горизонтальную проекцию точки встречи (общая точка двух треугольников) К из пересечения 12 и ВС и находим ее фронтальную проекцию на фронтальной проекции прямой ВС.

4. Проводим вторую вспомогательную проецирующую плоскость Q через сторону DF треугольника DEF .

5. Находим линию пересечения плоскости Q и треугольника АВС – 3 4.

6. Отмечаем горизонтальную проекцию точки L , являющейся точкой встречи стороны DF c плоскостью треугольника АВС и находим ее фронтальную проекцию.

7. Соединяем одноименные проекции точек К и L. К L – линя пересечения плоскостей общего положения, заданных треугольниками АВС и DEF .

8. Способом конкурирующих точек определяем видимость элементов треугольников на плоскостях проекций.


Так как выше изложенное действительно и для главных линий параллельных плоскостей, то можно сказать, что плоскости параллельны, если параллельны их одноименные следы (рис. 1.71).

На рисунке 1.72 показано построение плоскости параллельной заданной и проходящей через точку А. В первом случае через точку А проведена прямая (фронталь), параллельная заданной плоскости G . Тем самым проведена плоскость Р содержащая прямую параллельную заданной плоскости G и параллельная ей. Во втором случае через точку А проведена плоскость, заданная главными линиями из условия параллельности этих линий заданной плоскости G .

Взаимно-перпендикулярные плоскости. Если одна плоскость содержит

хотя бы одну прямую, перпендикулярную другой плоскости, то такие

плоскости перпендикулярны. На рисунке 1.73 показаны взаимно перпендикулярные плоскости. На рисунке 1.74 показано построение плоскости, перпендикулярной заданной через точку А, используя условие перпендикулярности прямой (в данном случае главных линий) плоскости.


В первом случае через точку А проведена фронталь, перпендикулярная плоскости Р , построен ее горизонтальный след и через него проведен горизонтальный след плоскости Q , перпендикулярно горизонтальному следу плоскости Р . Через полученную точку схода следов Q X проведен фронтальный след плоскости Q перпендикулярно фронтальному следу плоскости Р .

Во втором случае в плоскости треугольника проведены горизонталь ВЕ и фронталь BF и через заданную точку А задаем плоскость пересекающимися прямыми (главными линиями), перпендикулярную плоскости треугольника. Для этого проводим через точку А горизонталь и фронталь. Горизонтальную проекцию горизонтали искомой плоскости (N ) проводим перпендикулярно горизонтальной проекции горизонтали треугольника, фронтальную проекцию фронтали новой плоскости (M ) – перпендикулярно фронтальной проекции фронтали треугольника.